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Tempo and mode of genome evolution in
a 50,000-generation experiment

Olivier Tenaillon", Jeffrey E. Barrick??#, Noah Ribeck®*, Daniel E. Deatherage?, Jeffrey L. Blanchard®, Aurko Dasgupta®},
Gabriel C. Wu?, Sébastien Wielgoss®’, Stéphane Cruveiller®, Claudine Médigue®, Dominique Schneider”° & Richard E. Lenski®**

Adaptation by natural selection depends on the rates, effects and interactions of many mutations, making it difficult
to determine what proportion of mutations in an evolving lineage are beneficial. Here we analysed 264 complete
genomes from 12 Escherichia coli populations to characterize their dynamics over 50,000 generations. The populations
that retained the ancestral mutation rate support a model in which most fixed mutations are beneficial, the fraction of
beneficial mutations declines as fitness rises, and neutral mutations accumulate at a constant rate. We also compared
these populations to mutation-accumulation lines evolved under a bottlenecking regime that minimizes selection.
Nonsynonymous mutations, intergenic mutations, insertions and deletions are overrepresented in the long-term
populations, further supporting the inference that most mutations that reached high frequency were favoured by
selection. These results illuminate the shifting balance of forces that govern genome evolution in populations adapting

to a new environment.

Comparative genomic studies have identified the molecular basis of
adaptations including lactase permanence in humans!, domestication
of plants® and animals®, and pathogenicity in bacteria®. Nevertheless,
it is difficult to determine more generally what fraction of new muta-
tions in an evolving lineage are beneficial. Answering this question
is important for modelling sequence changes used in phylogenetic
methods® and would inform debate about adaptive and non-adaptive
modes of genome evolution®’.

The combination of experimental evolution and genome sequencing
provides a way forward that has been used with viruses, bacteria, yeast
and flies®!. In a study of bacteria, the diversity of mutations involved
in adaptation to high-temperature stress was studied by sequencing
>100 lineages after a 2,000-generation experiment'’. In another study,
sequencing a series of clones from one population over 40,000 genera-
tions showed the trajectory of genome evolution’. However, a short-term
experiment reveals only the early steps of adaptation, and it is difficult
to distinguish adaptive ‘driver’ and non-adaptive ‘passenger’ mutations
when only one population is examined. Beneficial mutations can also
be identified by lineage tracking'* and genetic reconstruction'” experi-
ments, but these approaches become impractical after an initial selective
sweep or when mutations become too numerous over time, respectively.

To overcome these limitations, we analysed complete genomes of
264 clones from 12 populations across 50,000 generations of the long-
term evolution experiment (LTEE) with E. coli'®!”. These populations
have evolved in a defined medium with scarce resources since 1988.
Mean fitness measured in competition with their ancestor increased by
~70% in that time'”. The LTEE is a model system for studying many
fundamental evolutionary questions” !>,

Genome-wide mutations and hypermutability
We sequenced the genomes of two clones from each population after
500, 1,000, 1,500, 2,000, 5,000, 10,000, 15,000, 20,000, 30,000, 40,000

and 50,000 generations using the Illumina platform (Supplementary
Data 1). We called mutations, including structural variants, using
the breseq pipeline24’25. In total, we found 14,572 point mutations;
500 insertions of insertion sequence (IS) elements; 726 deletions
and 1,132 insertions each < 50 base pairs (bp) (small indels); and
267 deletions and 45 duplications each >50bp (large indels). After
50,000 generations, average genome length declined by 63 kb (~1.4%)
relative to the ancestor (Extended Data Fig. 1). Mutations were not
distributed uniformly across the populations. Instead, six popula-
tions (Ara—1, Ara—2, Ara—3, Ara—4, Ara+3 and Ara+6) had 96.5%
of the point mutations, having evolved hypermutable phenotypes
caused by mutations that affect DNA repair or removal of oxidized
nucleotides'®?°. Figure 1a shows the trajectories for the total mutations
in all 12 populations; Fig. 1b is rescaled for better resolution of those
that did not become point-mutation mutators. Hypermutability tended
to decline over time as the load of deleterious mutations favoured
antimutator alleles®®. All four populations that were hypermutable at
10,000 generations accumulated synonymous substitutions (a proxy
for the underlying point-mutation rate) between generations 40,000
and 50,000 at much lower rates than from 10,000 to 20,000 generations
(Extended Data Fig. 2).

Increased numbers of IS elements can also cause hypermutability®,
with higher rates not only of transpositions but also deletions and dupli-
cations through homologous recombination. In population Ara+1,
31.8% of all mutations up to 50,000 generations were IS150 insertions,
compared with 12.3% for the other populations that never evolved ele-
vated point-mutation rates. This mode of hypermutability arose early in
Ara+1;IS150 insertions are overrepresented in each Ara+1 clone from
5,000 generations onwards when compared individually to all other
non-mutator clones from the same generation (Fisher’s exact test with
Bonferroni correction, P < 0.05). Two clones from other populations
were also IS150 hypermutators by this test: 38.7% of the mutations in
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Figure 1 | Total number of mutations over time in the 12 LTEE
populations. a, Total mutations in each population. b, Total mutations
rescaled to reveal the trajectories for the six populations that did not
become hypermutable for point mutations, and for the other six before
they evolved hypermutability. Each symbol shows a sequenced genome;
some points are hidden behind others. Each line passes through the
average of the genomes from the same population and generation.

a 30,000-generation clone from Ara—5 and 31.7% of the mutations
in a 40,000-generation clone from Ara—3 were IS150 insertions. The
aberrant Ara—5 clone shares only one mutation with other sequenced
Ara—5 clones, indicating early divergence; it does not share point muta-
tions with any other population, excluding cross-contamination. The
emergence of these various mutator types shows that evolution can
alter the production of genetic diversity?®”, which in turn changes the
tempo and mode of genome evolution.

Population phylogenies

Figure 2a shows phylogenetic trees constructed using point mutations
for each population; Fig. 2b shows the trees with branches rescaled
after mutators evolved. Some populations—including Ara—2, which
became hypermutable early, and Ara—6, which never did—harbour
lineages that coexisted for tens of thousands of generations. Some
others—including Ara—4, which became hypermutable, and Ara+2,
which did not—are more linear in structure, without deep branches
among the sequenced clones. Deep branches were probably supported
by the diversity-promoting effects of negative-frequency-dependent
interactions, as shown in the Ara—2 population®*?*. Sequencing
whole-population samples would provide more detailed information
on within-population diversity'!2,

Dynamics of genome evolution

The accumulation of point mutations increased greatly in hypermu-
table populations®'*?, potentially overwhelming the genomic signa-
ture of adaptation. Although mutator lineages may experience higher
rates of fitness improvement!”?’, the effect is usually small owing to
clonal interference between competing beneficial mutations®®?° and
the increased load of deleterious mutations®>*’. Therefore, beneficial
mutations become harder to detect in a sea of unselected mutations in
mutator lineages. To understand better the dynamic coupling between
adaptation and genome evolution, we first analysed the populations
that retained the ancestral mutation rate up to 50,000 generations and
the others before they became point-mutation or ISI150 mutators.

It was previously found!” that the mean-fitness trajectory of the LTEE
is well described by a power-law relation, in which log fitness increases
linearly with log time. Moreover, the power law accurately predicts
fitness to 50,000 generations using data from only the first 5,000 gen-
erations. It was shown that a population-dynamical model that incor-
porates two phenomena known to be important in the LTEE—clonal
interference**! and diminishing-returns epistasis!>**—generates a
power-law relation. This model in turn predicts that the number of
beneficial mutations should increase with the square root of time!”
However, not all mutations that accumulate are beneficial; neutral and
nearly neutral mutations can spread by recurring mutation, random
drift, and hitchhiking®*~>. Selective sweeps will purge some neutral
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Figure 2 | Phylogenetic trees for LTEE populations. a, Phylogenies for
22 genomes from each population, based on point mutations. b, The
same trees, except branches are rescaled as follows: branches for lineages
with mismatch-repair defects are orange and shortened by a factor of

25; branches for mutT mutators are red and shortened by a factor of 50.
Strain REL606 (on the left) is the ancestor. No early mutations are shared
between any populations, confirming their independent evolution. Most
populations have multiple basal lineages that reflect early diversification
and extinction; some have deeply divergent lineages with sustained
persistence, most notably Ara—2.

mutations but cause others to increase; overall, the expected number
of neutral mutations should increase linearly with time™.

To test these predictions, we fit three models to the trajectory for the
total number of mutations in the non-mutator and premutator lineages:

m = at
m=bt
m=at+ bt

where m is the number of mutations, ¢ is time (generations), and a
and b govern the genome-wide rates of accumulation of neutral and
beneficial mutations, respectively (Fig. 3). (Extended Data Fig. 3 shows
the models fit to each population separately.) Using the Akaike infor-
mation criterion (AIC), the two-parameter model fits the data much
better than those with only the linear (AAIC= —77.7) or square-root
(AAIC=—99.7) terms. Because the one-parameter models are nested
within the two-parameter model, we can also assess the significance of
adding the second parameter; P values are 7.5 x 10> and 5.2 x 107
relative to the linear and square-root models, respectively. The trajec-
tory for genome evolution thus shows signatures of both adaptive and
non-adaptive changes. However, the model that predicts the square-
root trajectory of beneficial substitutions makes various assumptions
(for example, about the form of epistasis), and both the predicted and
observed trajectories have statistical uncertainties. (Extended Data Fig. 4
shows the uncertainty in estimating a and b from the observed trajec-
tory.) Therefore, we examined additional evidence to shed light on the
proportion and identity of beneficial mutations.

Evidence for beneficial mutations

We sought to understand what proportion of the genomic changes in
the non-mutator populations was adaptive, and how that proportion
changed over time. One line of evidence derives from the expecta-
tion that synonymous substitutions—point mutations in protein-cod-
ing genes that do not affect the amino-acid sequence—are neutral
and should therefore accumulate at a rate equal to the underlying
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Figure 3 | Alternative models fit to the trajectory of genome evolution.
Each symbol shows total mutations in a clone from five populations

that never became mutators and seven before point mutation or IS150
hypermutability evolved. Colours are the same as in Fig. 1; open triangles
indicate grand means. Dashed grey line shows the best fit to the linear
model, m = at. Solid grey curve shows the fit to the square-root model,
m=b/t. Black curve is fit to the composite model, m=at + b V/t, where
a=10.000944 and b=0.134856. See text for statistical analysis.

mutation rate?®. This expectation is not strictly true owing to selec-
tion on codon usage, RNA folding, and other effects, but it is gener-
ally thought that such selection is extremely weak, affects only a small
fraction of sites at risk for synonymous mutations, or both**3’. We
calculate whether nonsynonymous and intergenic point mutations are
found in excess relative to synonymous mutations, given the number
of sites at risk for each class. Figure 4a shows the number of synony-
mous mutations in non-mutator and premutator populations, scaled
so the mean at 50,000 generations is unity. As expected, synonymous
mutations accumulated at an approximately constant rate (Extended
Data Fig. 5). Figure 4b shows the number of nonsynonymous mutations
relative to the neutral expectation based on synonymous mutations.
Nonsynonymous mutations accumulated ~17.1 times faster than
synonymous ones during the first 500 generations and ~3.4 times
faster over 50,000 generations. Nonsynonymous mutations continued
to accumulate at over twice the rate of synonymous mutations in the
later generations (Extended Data Fig. 6), implying that most nonsyn-
onymous mutations that reached high frequency were beneficial even
after so long in a constant environment. The same approach applied to
intergenic point mutations (Fig. 4c) also reveals a large excess relative
to synonymous mutations, although the number of events is smaller
and the uncertainty greater. This result implicates adaptive changes in
noncoding regions that presumably affect the binding sites for regu-
latory proteins®~4.

Synonymous mutations provide an internal benchmark for non-
synonymous and intergenic point mutations. However, synonymous
mutations are not directly informative for understanding how selec-
tion affects the accumulation of indels that comprise almost half the
mutations in non-mutator clones at 50,000 generations (Extended Data
Fig. 7). To estimate the proportion of beneficial changes for other
types of mutation, we compare the LTEE and a mutation accumulation
experiment (MAE) in which 15 lines were propagated via repeated
single-cell bottlenecks*!. Such bottlenecks eliminate the variation
needed for natural selection, so that all types of mutations accumulate
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Figure 4 | Trajectories for synonymous, nonsynonymous and intergenic
point mutations. a, Synonymous mutations, scaled so that the mean

of five non-mutator populations (excluding point mutation and IS150
hypermutators) is unity at 50,000 generations. b, Nonsynonymous
mutations, scaled using the same rate as synonymous mutations after
adjusting for sites at risk for both classes. ¢, Intergenic point mutations,
scaled using the same rate as synonymous mutations after adjusting for
sites at risk. Each symbol shows the mean for sequenced genomes from

a non-mutator or premutator lineage. Colours are as in Fig. 1. Note the
discontinuous scale; populations with zero mutations are plotted below.
Black lines connect grand means; shading shows standard errors calculated
from replicate populations.

at the rates at which they happen, regardless of fitness effects, except for
lethal or highly deleterious mutations that preclude cells from making
colonies used to propagate lines®. MAE lines thus provide an external
baseline for distinguishing beneficial and non-beneficial mutations. In
fact, because more unselected mutations are deleterious than benefi-
cial, MAE lines are expected to lose fitness over time, which they did
(Extended Data Fig. 8).

To quantify the relative rates for all types of mutations in the absence
of selection, we sequenced clones from the MAE lines after 550 daily
bottlenecks (Supplementary Data 1). Consistent with the random
accumulation of mutations, the number of nonsynonymous (including
nonsense) mutations was similar to the expectation based on synon-
ymous mutations (117 observed, 105.02 expected); the resulting ratio
of 1.11 is well within the 95% confidence interval (0.70-1.50) obtained
by a randomization test. Also, there was no among-line variation in
total mutations (x> = 5.46, degrees of freedom (df) = 14, P=10.978).
We can therefore reasonably use the MAE lines to estimate relative
rates of different types of mutations, with synonymous ones providing
abenchmark largely free of selection in both experiments. For example,
LTEE population Ara—1 had 21 nonsynonymous mutations at
20,000 generations and the expected number of synonymous muta-
tions based on the average non-mutator population was 1.08 (Extended
Data Fig. 5); the 15 MAE lines in total had 117 nonsynonymous and
39 synonymous mutations; thus, the ratio of observed mutations
to the neutral expectation is (21/1.08)/(117/39) = 6.5. These ratios
show that all major classes of mutations—including various indels—are
substantially overrepresented in the LTEE relative to the MAE
(Extended Data Fig. 9), implying that many mutations in each class
were adaptive during the LTEE.

Parallel evolution at many gene loci

Parallel evolution occurs when similar changes arise independently
in multiple lineages, and it is often used to discover putative targets
of selection®*®10-1321 Genetic parallelism can be studied at the level
of DNA sequence, affected genes, or integrated functions. Parallelism
at the nucleotide level tends to be rare because different mutations
in a gene often produce similar benefits*!%-122!, although there are
exceptions®. Parallelism at a functional level requires detailed under-
standing that may be unavailable, and it is difficult to interpret when
there are many mutations. We therefore examined parallelism at the
gene level.
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Table 1 | Protein-coding genes with the highest G scores

Gene Length Observed Expected G Annotation

pykF 1,413 19 0.16 181 Pyruvate kinase

iclR 825 13 0.10 128 Transcriptional repressor, glyoxylate bypass

spoT 2,109 14 0.25 113 Stringent response

nadR 1,233 12 0.14 106 Bifunctional transcriptional repressor and NMN adenylyltransferase
hsiU 1,332 11 0.15 94 Molecular chaperone and ATPase component of protease

yijC (also known as fabR) 705 7 0.08 62 Transcriptional repressor, fatty acid and phosphatidic acid pathway
topA 2,598 8 0.30 52 DNA topoisomerase | subunit

malT 2,706 8 0.31 52 Transcriptional activator, maltotriose-ATP-binding

mrdA 1,902 7 0.22 48 Transpeptidase in peptidoglycan synthesis

mreB 1,044 6 0.12 47 Longitudinal peptidoglycan synthesis

infB 2,673 7 0.31 44 Translation initiation factor IF-2

arcA 717 5 0.08 41 Response regulator in two-component system, anoxic redox control
argR 471 4 0.05 34 Repressor of arginine regulon

rplF 534 4 0.06 33 50S ribosomal subunit protein

mreC 1,104 4 0.13 28 Longitudinal peptidoglycan synthesis

Genes are ranked by G scores computed using observed independent nonsynonymous mutations relative to expected number given gene length (bp). Data are from populations with the ancestral

point-mutation rate throughout and other populations before they evolved hypermutability.

We focused on lineages that retained the ancestral point-mutation
rate (including clones from populations that later became hypermu-
table) because, as shown earlier, most mutations are drivers in those
cases; we expect hypermutability to make the analysis less informative
because many more mutations are passengers. We first calculated the
expected number of nonsynonymous mutations for each single-copy
protein-coding gene based on its length as a fraction of all such genes
and the total number of nonsynonymous mutations in the relevant
lineages (Supplementary Data 2). We computed G scores for good-
ness of fit between observed and expected values; the total score is
2,593.7. We compared that total with simulated data sets in which
positions of mutations in the coding genome were randomized, and the
observed total significantly exceeded the simulations (mean simulated
G=1,933.7, Z=25.5, P < 10~ '4%), Fifty-seven genes had two or more
mutations; these genes had 50.1% of the nonsynonymous mutations

Table 2 | Genes with the most mutations of other types

but constituted only 2.1% of the coding genome. (Only one gene
had multiple synonymous changes.) Table 1 shows the 15 genes that
contribute the most to the total G score. Several encode proteins with
core metabolic or regulatory functions, including three involved in
peptidoglycan synthesis.

We ran the same analysis for lineages that evolved hypermutability
(Supplementary Data 3), and the randomization test indicates signif-
icant parallelism (G statistic = 5,098.4, mean simulated G=4,581.1,
Z=5.745, P < 107%). As expected, however, the signal-to-noise ratio
reflected in the significance level is much weaker than for the non-
mutator lineages. Most genes with the highest scores in mutator
lineages differ from those in non-mutators, in part because those genes
often had beneficial mutations before hypermutability evolved.

Table 2 lists the 16 genes with the most deletions, duplications,
insertions and intergenic point mutations in non-mutator lineages

Genes Mutations Number IS MAE  Annotation

rbsD Mostly large deletions 41 Yes No D-Ribose utilization; most deletions affect entire rbs operon

nupC Various intergenic 19 Yes Yes Nucleoside transporter

iap Mostly large indels 19 Yes No Alkaline-phosphatase isozyme conversion; most indels affect tens of adjacent
genes including rpoS, which encodes stationary-phase o factor

mokB Various indels 17 Yes Yes Enables hokB toxin expression

yhgl/gntT Intergenic point mutations 16 No No Gluconate transport

mokC Various indels 15 Yes Yes Enables hokC toxin expression

ybcU (also known Large indels 14 Yes No Indels affect this and adjacent remnants of DLP12 prophage

as borD)

ECB_02013 Various indels 14 No Yes Indels affect this and adjacent remnants of P2-like prophage

ECB_02816 (also Various indels 14 Yes No Polysialic-acid transport protein precursor

known as kpsD)

acs/nrfA Various intergenic 14 No No Acetyl-CoA synthase; nitrite reductase

hokE Large indels 12 Yes No Toxin in plasmid-derived toxin-antitoxin system; most indels affect several
adjacent genes involved in iron acquisition

ybeB/phpB Various intergenic 11 Yes No Unknown functions, but adjacent to genes involved in cell-wall synthesis

ydiJ/ydiK Various intergenic 11 No No Predicted FAD-linked oxidoreductase; putative inner membrane protein

IdrC Various indels 10 Yes Yes Small toxic polypeptide

menC IS insertions 10 Yes Yes Menaquinone biosynthesis

fimA Mostly IS insertions 10 Yes No Component of fimbrial complex

Genes are ranked by total mutations excluding nonsynonymous and synonymous point mutations. When two genes are separated by a solidus, the affected sequence includes the intergenic region
between them. IS column indicates whether the majority of mutations involve IS elements. MAE column indicates whether the same or nearly identical mutations occurred in one or more MAE lines.
Data are from populations with the ancestral point-mutation rate throughout and others before they evolved hypermutability.
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(Supplementary Data 2). For mutations that impact multiple genes,
we show the most frequently affected gene (or adjacent pair when
most events are intergenic). In 12 cases, the majority of the mutations
were mediated by IS elements; these include insertions as well as
deletions and duplications that appear to involve homologous recom-
bination. In six cases (five with IS insertions), the same or nearly
identical mutations occurred in one or more MAE lines, suggesting
mutational hotspots. These changes may indicate high-frequency
events, but recall that IS insertions and large indels are enriched in
the LTEE relative to the MAE (Extended Data Fig. 9), implying that
many are also beneficial. Indeed, the IS-mediated rbsD deletions
occur at a high rate and are beneficial in the LTEE environment*?,
and some IS-mediated mutations appear to be beneficial in other
studies as well*>%,

The parallelisms involving nonsynonymous substitutions and other
mutations in the LTEE, coupled with their high rates of accumulation
relative to the MAE, indicate that many observed mutations were
drivers of adaptation. For indels, however, the specific target genes are
difficult to identify owing to the multiplicity of genes affected and the
potentially confounding effect of mutational hotspots.

Discussion

Adaptation by natural selection sits at the heart of phenotypic evolu-
tion. However, the random processes of spontaneous mutation and
genetic drift often overwhelm and obscure genomic signatures of
adaptation. We overcame this difficulty by analysing genomes from
12 bacterial populations that evolved for 50,000 generations under
identical culture conditions. Even so, six populations evolved hyper-
mutable phenotypes that increased point-mutation rates ~100-fold,
and another evolved hypermutability caused by a transposable element.
By focusing on populations that retained the ancestral mutation
rate, we identified several key features of the tempo and mode of
their genome evolution. First, a population-genetic model with two
terms—one for beneficial drivers, the other for neutral hitchhikers—
fits the dynamics much better than models without both terms.
Second, the great majority of mutations observed during the early
generations were beneficial drivers. Third, the proportion of observed
mutations that were beneficial declined over time but remained sub-
stantial even after 50,000 generations. The second and third findings
follow from the population-genetic model. Both are also strongly sup-
ported by the excess of nonsynonymous to synonymous substitutions
in the LTEE and by the excess of several classes of mutations, including
indels, in comparison to mutation-accumulation lines. Fourth, there
was strong gene-level parallel evolution across the replicate LTEE
populations.

Our analyses also show a contrast between the contributions
of beneficial mutations to molecular evolution and to the fitness
trajectory in a stable environment. In particular, beneficial mutations
continued to constitute a large fraction of genetic changes throughout
the 50,000 generations of the LTEE, whereas the resulting fitness
gains were only a few per cent in the last 10,000 generations'’.
Beneficial mutations with very small selection coefficients are none-
theless visible to natural selection'’”. Hence, adaptation can remain
a major driver of molecular evolution long after an environmental
shift. Our experimental results thus support a selectionist view of
molecular evolution, complementing indirect evidence based on
comparative genomics in bacteria, Drosophila and humans*~.
Of course, the LTEE may differ from many natural populations in
important respects including its low mutation rate, the absence of sex
or horizontal gene transfer, and a stable environment. As we showed,
high mutation rates tend to obscure the role of selection in molecu-
lar evolution. The effects of horizontal gene transfer and variable
environments*** on the dynamic coupling of genomic and adaptive
evolution should also be examined further. Long-term experiments
with microorganisms provide opportunities for rigorous analyses of
these issues.
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METHODS

Long-term evolution experiment. The LTEE has 12 populations founded from
two almost identical strains of Escherichia coli. Six populations, designated
Ara—1 to Ara—6, started from REL606, a descendant of the B strain of Luria and
Delbriick® >3, The other six, Ara+1 to Ara+6, derive from REL607, which differs
from REL606 by point mutations in araA and recD. The mutation in araA was
selected before starting the LTEE; it confers the ability to grow on L-arabinose,
which provides a marker in competition assays used to measure fitness'®!”. The
recD mutation arose inadvertently before starting the LTEE. The LTEE began in
1988, and the populations have been propagated (with occasional interruptions)
at 37 °C by daily 100-fold dilutions in 10 ml Davis minimal medium with 25 pug/ml
glucose (http://lenski.mmg.msu.edu/ecoli/dm25liquid.html). The regrowth allows
~6.67 generations per day; the population size fluctuates between ~3 x 10° and
~3 x 10% cells except in population Ara—3, which has had a population size
several times larger since ~33,000 generations, when cells gained the ability to
consume the citrate that is also present in the medium'®**. Whole-population
samples are taken every 75th transfer (500 generations) and stored with glycerol
as a cryoprotectant at —80 °C, where they are available for later analysis. Here
we analysed the genomes of two clones sampled from each population at 500,
1,000, 1,500, 2,000, 5,000, 10,000, 15,000, 20,000, 30,000, 40,000 and 50,000 gen-
erations (Supplementary Data 1). We deliberately included clones from the deeply
diverged lineages in population Ara—2 from 20,000 generations onwards and both
the majority Cit" lineage and the minority Cit~ lineage in population Ara—3 at
generation 40,000. This sampling scheme does not affect inferences about the rates
and patterns of genome evolution because both populations were hypermutable
at these time points and thus excluded from the main analyses. These clones were
included to illustrate diversity within populations, although we also found previ-
ously unknown cases of divergent lineages. No statistical methods were used to
predetermine sample size. The experiments were not randomized. The investiga-
tors were not blinded during experiments and outcome assessment.
Mutation-accumulation experiment. The 15 MAE lines analysed here started
from strain REL1207, which is an Ara™ mutant of a clone sampled from LTEE
population Ara—1 at 2,000 generations. REL1207 differs from REL606 by a total
of eight mutations, including one in araA that confers the Ara™ marker phenotype.
Each line was propagated through 550 single-cell bottlenecks by picking a colony at
random from a Davis minimal agar plate with glucose at 200 pg/ml and streaking
the cells onto a fresh plate. Given ~25 cell doublings to produce a typical colony*!,
the 550 cycles represent ~13,750 generations. The bottlenecks imposed by this
procedure eliminate the genetic variation that fuels adaptation by natural selection;
as a consequence, mutations accumulate at rates that depend on their underlying
mutation rate but not their fitness effects, except for highly deleterious mutations
that preclude sufficient growth to form a colony®. Because more mutations are
deleterious than are beneficial, fitness declined under this regime (Extended Data
Fig. 8). The 15 sequenced clonal isolates, each from a different MAE line, are
JEB807-JEB821 (Supplementary Data 1). None of the lineages became hypermu-
table based on their mutational signatures and the absence of significant hetero-
geneity in the total mutations accumulated (see main text). However, the mean
per-generation rate at which synonymous mutations arose was ~3.5-fold higher
in the MAE lines than in the five LTEE populations that remained non-mutators
for all 50,000 generations (Supplementary Data 4; t;=3.0755, P=0.0065). This
difference may reflect the different conditions in liquid and agar media, including
the glucose concentration and local cell density, which might affect the reactive
oxygen species that cells experience. The comparisons between the LTEE and
MAE (Extended Data Fig. 9) would change if the underlying rates of the various
types of mutation responded disproportionately to the different conditions in the
MAE. That possibility seems implausible for the different classes of point mutation
(Extended Data Fig. 9a, b), and the differences would have to be substantially
larger than the different rates of synonymous mutations to produce the excess
1S150 insertions (Extended Data Fig. 9c) and large indels (Extended Data Fig. 9f)
observed in the LTEE relative to the MAE.

Genome sequencing. Frozen samples from the LTEE and MAE were revived via
overnight growth at 37°C in either LB or Davis minimal medium supplemented
with 1,000 pg/ml glucose. Genomic DNA was isolated from each culture using the
Qiagen Genomic-tip 100/G kit or equivalent. The DNA samples were sequenced
at Genoscope or Integragen SA (Evry, France), the Michigan State University
Research Technology Support Facility (East Lansing, USA), or the University of
Texas at Austin Genome Sequencing and Analysis Facility (Austin, USA). Illumina
Genome Analyzer and HiSeq instruments were used to generate single-end or
paired-end reads ranging in length from 35 to 150 bases according to standard
procedures, with median coverage of 80-fold and 95-fold for the 264 LTEE and 15
MAE clones, respectively (Supplementary Data 1). Of the 264 LTEE genomes in
this study, 40 were previously analysed in other studies®!*2*>-%7, Supplementary
Data 4 shows the number of every type of mutation inferred after performing
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the analyses described below on each of the LTEE and MAE genomes used in
this study.

Mutation calling. We used breseq (versions 0.26.0 to 0.27.0) to predict both
single-nucleotide and structural differences®** based on how the Illumina reads
for each sample mapped to the genome sequence of E. coli B REL606 (GenBank
accession NC_012967.1)*%. We counted and classified mutations using an updated
version of the REL606 reference genome with improved feature annotations. The
updated genome file (in both GenBank and GFF3 formats) and lists of predicted
mutations in each evolved genome (in the Genome Diff format described in an
appendix to the breseq manual) are freely available online (http://github.com/
barricklab/LTEE-Ecoli).

Most types of single-step mutations, including large deletions and transposition
events leading to copies of IS elements at new positions in the genome, are directly
predicted by breseq when they occur in non-repetitive genomic regions. The initial
lists of predicted mutations were curated and refined as previously described®*.
Briefly, complex mutations involving multiple steps (such as a new IS insertion
followed by a flanking deletion) and structural mutations that overlap repetitive
regions of the genome were manually resolved from unassigned new junction and
missing coverage evidence in the breseq output. Large duplications and amplifica-
tions were detected by examining the coverage depth of mapped reads across the
reference genome and comparing this information with the positions of repeat
sequences and unassigned junctions. Owing to limitations of short-read DNA
sequencing data, we could not fully predict point mutations and indels of one to a
few base pairs within repeat regions (for example, IS elements) or gene conversions,
in which intragenomic recombination between nearly identical copies of a large
repeat region (for example, the seven copies of the rRNA operon) converts a minor
variation in one copy to match exactly the sequence of another copy. Instead, all
such genetic changes in repetitive regions of the genome were uniformly ignored
in downstream analyses, as described later.

To validate the final lists of mutations predicted in each clone, we applied
these changes to the ancestral REL606 sequence and used breseq to compare the
Illumina reads against this simulated evolved genome to verify there were no
further, unexplained discrepancies. This step of applying mutations to the reference
genome was also used to estimate the final genome size of each evolved clone, with
the assumption that new IS insertions were of the most common size for that IS
element in the reference genome.

For 6 of the 264 LTEE samples, there was evidence of non-clonality in the
sequence data. Some samples appeared to be mixtures of two very closely related
clones that shared nearly all mutations but had one to several mutations specific
to each type, together adding to a frequency of 100% (for example, sets of muta-
tions at frequencies of 35% and 65%). This situation might result from inadvert-
ently sampling two adjacent colonies on an agar plate when picking clones from
an LTEE population. In other cases, only one or two mutations were found at
an intermediate frequency. This type of heterogeneity might arise from strong
selection favouring new mutations during colony outgrowth, subculturing and
revival of samples before DNA extraction, as these conditions differ from the
LTEE. In each case, we reconstructed the major genotype in the sample, as noted
in Supplementary Data 1.

We also ignored putative genome variation associated with a cryptic 186-like
prophage element (REL606 genome coordinates 880528-904682). In ten of the
LTEE populations, we observed clones with increased read-coverage depth of
this region and reads spanning a new sequence junction consistent with either
tandem head-to-tail amplifications of this region or the production of circular
DNA molecules joined at these exact nucleotides. The changes in the apparent
copy number of this region often deviated from the integer values expected for
a stable duplication or amplification. The prophage-related changes in coverage
appeared most often in genomes isolated from 2,000 generations or earlier in the
LTEE. There is no evidence of infective phage production in the LTEE, but it is
possible that replication of DNA encoding a defective phage occurs stochastically
at some low level in the ancestral strain REL606 or that production of this DNA is
induced by stress when culturing samples for DNA isolation.

Phylogenetic consistency. Owing to the long duration of the LTEE and the evolution
of mutators in several lineages, some mutations may be hidden or initially grouped
with other mutations into a single change when comparing a late-generation
evolved genome with the ancestral genome. For example, a point mutation might
occur early in the experiment and then the region containing that mutation is
later deleted. Similarly, the deletion of one base early and the subsequent deletion
of an adjacent base would be called as a single two-base deletion in later samples.
To obtain more accurate counts in light of these issues, we used each population’s
inferred phylogeny to split or add mutations, as appropriate, so that the mutation
list for each clone reflects the most parsimonious set of mutational steps between
that clone and its ancestor. Specifically, we chose histories with the fewest total
mutations, the fewest mutations on early branches (in case of ties), and the fewest
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total nucleotide changes summed over all mutations. Because this procedure is con-
servative in adding mutations to achieve phylogenetic consistency, it might under-
estimate the number of mutations on branches leading to an evolved genome when
intermediate states are not resolved by the relationships of the sequenced clones.
Final mutation lists. We performed two final filtering steps to enable the sets of
mutations to be uniformly compared across all genomes. In doing so, we classi-
fied as ‘small mutations’ all single-nucleotide substitutions, insertions and dele-
tions of 20 or fewer bp, substitutions replacing 20 or fewer bp in the reference
genome with 20 or fewer other bp, and all simple sequence repeat (SSR) mutations
regardless of their size. SSR mutations add or remove one or more copies of a
tandem-repeat unit consisting of one or a few bp. We defined SSR mutations as
containing at least two copies of the repeat unit and having a total length of at least
five bp when including all copies of the tandem repeat in the reference genome.
For example, the genetic changes GGGGG—GGGG, TATATA—TATATATA
and TACGTTACGT—TACGT would all be classified as SSR mutations, but
GGGG—GGGGG, TATA—TATATA and TACGT—TACGTTACGT would
not. All other genomic changes were considered ‘large mutations’ for purposes of
filtering.

The ability to call small mutations located in repetitive regions of the genome
is dependent on read length, so we removed all such mutations in regions where
it would be a problem to uniformly detect them from the mutation lists before
further analyses. To do this, we enumerated all regions of > 20 bp that had an exact
match elsewhere in the genome of the ancestral strain REL606 using MUMmer
v.3.23 (ref. 58). We then merged regions from this list that were separated by five
or fewer bp. All resulting regions that were now > 35bp were included in a list of
masked genomic intervals. We also added to this list a hypervariable SSR consisting
of seven copies of a tetranucleotide sequence that could not be reliably called in
data sets with short reads (coordinates 2103889-2103919). Any small mutations
contained in these masked regions were excluded from all downstream analyses.

Finally, we flagged all nucleotide substitutions or small indels occurring within
20bp of the end of an IS element. The sequences directly adjacent to IS elements
appear to experience an unusually high mutation rate, possibly due to frequent
transposase cleavage and DNA repair. Mutations at these IS-adjacent sites probably
have no effect on cellular phenotypes and fitness. We excluded them from the final
lists of mutations used in all further analyses because they could bias the inferred
mutational spectra and rates.

Phylogenetic analyses. To produce the phylogenetic trees shown in Fig. 2, we used
the point mutations associated with each clone. A minimum-evolution tree was
built using the Jukes-Cantor one-parameter model®. We used this model for two
reasons. First, the mutator lineages had very different mutational spectra from the
non-mutators”?>>>%, Second, many mutations seen in non-mutator lineages were
under positive selection, and so it is appropriate to give the mutations equal weight
and not, for instance, reduce the importance of transitions relative to transversions.
The trees were plotted with the R package APE®’. The composite tree has the star-
like structure expected for independent evolution of the populations. Therefore,
trees were made separately for each population and then combined in Fig. 2, which
allowed multiple basal branches to be placed with the appropriate populations.

Parallel evolution in non-mutator lineages. For genomes that did not come from
point-mutation hypermutator lineages (Supplementary Data 1), we examined the
extent of parallelism at the gene level in two ways. The first approach was based
only on nonsynonymous mutations, because it is straightforward to quantify the
overall extent of parallelism, determine the statistical significance of the paral-
lelism, and rank genes based on their contributions to the significance. For each
protein-coding gene i, we know its length, L;, and the number of independent non-
synonymous mutations observed in that gene across all clones from non-mutator
and premutator lineages, N;. We summed the lengths and relevant mutations
over all single-copy protein-coding genes in the ancestral genome to obtain Lo
(3,920,306) and Ny, (457, including two mutations that each affected overlapping

reading frames), respectively. We computed the expected number of mutations in
each gene, E;, as follows:

E; = Niot (Li/Ltot)
We then computed a G; score for each gene for which N; > 0 as follows:
G; = 2N; log, (N;/E;)

We set G;=0 for those genes for which N;=0. This analysis ignores variability
among genes in the proportion of sites at risk for nonsynonymous mutations.
However, such differences are small and should hardly affect the analysis. The total
G statistic equals the sum of the scores over all genes. To compute the expected
G statistic under the null hypothesis of a random distribution of mutations, we
generated 1,000 simulated data sets in which N, mutations were randomly
placed throughout the coding genome. We computed the total G statistic for each
simulated data set, and we calculated its mean and standard deviation across the
1,000 simulations. To assess the significance of the observed G statistic, we com-
puted the Z score as the difference between the observed and mean simulated values,
divided by the standard deviation of the simulated values. Supplementary Data 2
lists each gene and the information used to calculate its G score. Table 1 shows the
15 genes with the highest G scores.

Supplementary Data 2 also shows other categories of mutation in or near each

protein-coding gene including synonymous mutations, intergenic point muta-
tions (between any particular gene and one of its immediately adjacent genes),
IS insertions, small indels (<50 bp), large deletions (>50bp) and long duplications
(>50bp). Table 2 shows the 16 genes that had the most total deletions, duplications,
insertions and intergenic point mutations (that is, all mutations except synonymous
and nonsynonymous mutations in the coding gene itself).
Parallel evolution in mutator lineages. We examined parallel changes in lineages
that evolved point-mutation hypermutability by analysing nonsynonymous
substitutions as above. To identify mutations that occurred after a lineage became
hypermutable (Supplementary Data 3), we subtracted the mutations that occurred
on non-mutator branches from the total mutations. This approach may result in a
few mutations that arose before hypermutability being included in the counts for
mutator lineages, but given the large increases in the point-mutation rate in the
mutators (Fig. 1) it provides a reasonable approximation.
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sequenced at each time point shown from 500 to 50,000 generations. and the points show all outlier values beyond the whiskers.

The red line shows the length of the ancestral genome. The boxes are the
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serves as a proxy for the underlying point-mutation rate. All four of
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Extended Data Figure 3 | Alternative models fit to trajectory of genome  the same, or almost the same, number of mutations. For the populations

evolution for each LTEE population. a, Ara—1. b, Ara+1. ¢, Ara—2. that evolved hypermutability, data are shown only for time points before
d, Ara+2.e, Ara—3.f, Ara+3. g, Ara—4. h, Ara+4. i, Ara—5.j, Ara+5. mutators arose. In each panel, the dashed grey line shows the best fit to

k, Ara—6.1, Ara+6. Each symbol shows the total mutations in a sequenced  the linear model; the solid grey curve shows the best fit to the square-root
genome; in many cases, the symbols for the two genomes from the same model; and the solid black curve shows the best fit to the composite model
population and generation are not distinguishable because they have with both linear and square-root terms.
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Extended Data Figure 4 | Uncertainty in parameter estimation for the premutator lineages (Fig. 3). The black central point shows the maximum
model describing the rates of accumulation for neutral and beneficial likelihood estimates, and the three black contours show solutions 2, 6 and
mutations. Contours show relative likelihoods for simultaneously 10 log units away. The points on the horizontal and vertical axes show
estimating the linear and square-root coefficients from the observed values for the best one-parameter models.

numbers of mutations that accumulated over time in non-mutator and
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Extended Data Figure 5 | Accumulation of synonymous substitutions Small horizontal offsets were added so that overlapping points are visible.
in non-mutator lineages. Each filled symbol shows the mean number Colours are the same as in Fig. 1. Open triangles show the grand means of
of synonymous mutations in the (usually two) non-mutator genomes the replicate populations. The grey line extends from the intercept to the
from an LTEE population that were sequenced at that time point; non- final grand mean. The slope of that line was used to scale the relative rates
integer values can occur if the two genomes have different numbers. of synonymous, nonsynonymous and intergenic point mutations in Fig. 4.
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Extended Data Figure 6 | Temporal trend in accumulation of
nonsynonymous mutations relative to the neutral expectation in non-
mutator lineages. Interval-specific accumulation of nonsynonymous
mutations calculated from changes in the total number of nonsynonymous
mutations between successive samples. As with the cumulative data

in Fig. 4b, values are scaled by the average rate of accumulation for
synonymous mutations over 50,000 generations, after adjusting for the

numbers of genomic sites at risk for nonsynonymous and synonymous
mutations. Each point shows the average rate calculated for a non-mutator
or premutator population; small horizontal offsets were added so that
overlapping points are visible. Note the discontinuous scale; populations
with no additional mutations over an interval are plotted below. Colours
are the same as in Fig. 1. Black lines connect grand means; the grey
shading shows standard errors calculated from the replicate populations.
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Extended Data Figure 7 | Mutational spectrum for non-mutator column. Base substitutions are divided into synonymous, nonsynonymous,
lineages in the LTEE. Shaded bars show the distribution of different intergenic, and other categories; the nonsynonymous category includes
types of genetic change for all independent mutations found in the set nonsense mutations, and the ‘other’ category includes rare point mutations
of non-mutator clones that were sequenced at each generation. The total in noncoding RNA genes and pseudogenes.

number of mutations in this set at each time point (N) is shown above each
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Extended Data Figure 8 | Changes in fitness of MAE lines after 550
single-cell bottlenecks and ~13,750 generations. Each point shows

the mean fitness based on nine competition assays between the MAE
ancestor (REL1207) or one of the 15 MAE lineages (JEB807-JEB821) and
the Ara™ variant of the MAE ancestor (REL1206). One-day competition

assays were performed using the standard procedures and same conditions
as for the LTEE'®Y7. Error bars show 95% confidence intervals. *P < 0.05,
*#*P < 0.01, based on two-tailed ¢-tests of the null hypothesis that relative
fitness equals 1. Ten of the fifteen MAE lines experienced significant
fitness declines, while none had significant gains.
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Extended Data Figure 9 | Trajectories for mutations by class in the generations (Fig. 4a), and then scaled by the ratio of the number of
LTEE in comparison with neutral expectations based on the MAE. the indicated class of mutation relative to the number of synonymous
a—f, Accumulation of nonsynonymous mutations (a), intergenic point mutations in the MAE lines. In all panels, each symbol shows a non-
mutations (b), IS150 insertions (c), all other IS-element insertions (d), mutator or premutator population. Note the discontinuous scale, in which
small indels (e) and large indels (f). Colours are the same as in populations with no mutations of the indicated type are plotted below.
Fig. 1. All values are expressed relative to the rate at which synonymous Black lines connect grand means over the replicate LTEE populations; the
mutations accumulated in non-mutator LTEE lineages over 50,000 grey shading shows the corresponding standard errors.
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