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Tempo and mode of genome evolution in 
a 50,000-generation experiment
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Comparative genomic studies have identified the molecular basis of 
adaptations including lactase permanence in humans1, domestication 
of plants2 and animals3, and pathogenicity in bacteria4. Nevertheless, 
it is difficult to determine more generally what fraction of new muta-
tions in an evolving lineage are beneficial. Answering this question 
is important for modelling sequence changes used in phylogenetic 
methods5 and would inform debate about adaptive and non-adaptive 
modes of genome evolution6,7.

The combination of experimental evolution and genome sequencing 
provides a way forward that has been used with viruses, bacteria, yeast 
and flies8–13. In a study of bacteria, the diversity of mutations involved 
in adaptation to high-temperature stress was studied by sequencing  
>100 lineages after a 2,000-generation experiment10. In another study, 
sequencing a series of clones from one population over 40,000 genera-
tions showed the trajectory of genome evolution9. However, a short-term 
experiment reveals only the early steps of adaptation, and it is difficult 
to distinguish adaptive ‘driver’ and non-adaptive ‘passenger’ mutations 
when only one population is examined. Beneficial mutations can also 
be identified by lineage tracking14 and genetic reconstruction15 experi-
ments, but these approaches become impractical after an initial selective 
sweep or when mutations become too numerous over time, respectively.

To overcome these limitations, we analysed complete genomes of 
264 clones from 12 populations across 50,000 generations of the long-
term evolution experiment (LTEE) with E. coli16,17. These populations 
have evolved in a defined medium with scarce resources since 1988. 
Mean fitness measured in competition with their ancestor increased by  
~70% in that time17. The LTEE is a model system for studying many 
fundamental evolutionary questions9,15–23.

Genome-wide mutations and hypermutability
We sequenced the genomes of two clones from each population after 
500, 1,000, 1,500, 2,000, 5,000, 10,000, 15,000, 20,000, 30,000, 40,000 

and 50,000 generations using the Illumina platform (Supplementary 
Data 1). We called mutations, including structural variants, using 
the breseq pipeline24,25. In total, we found 14,572 point mutations;  
500 insertions of insertion sequence (IS) elements; 726 deletions 
and 1,132 insertions each ≤ 50 base pairs (bp) (small indels); and 
267 deletions and 45 duplications each >50 bp (large indels). After 
50,000 generations, average genome length declined by 63 kb (~1.4%) 
relative to the ancestor (Extended Data Fig. 1). Mutations were not 
distributed uniformly across the populations. Instead, six popula-
tions (Ara−1, Ara−2, Ara−3, Ara−4, Ara+3 and Ara+6) had 96.5% 
of the point mutations, having evolved hypermutable phenotypes 
caused by mutations that affect DNA repair or removal of oxidized  
nucleotides18,20. Figure 1a shows the trajectories for the total mutations 
in all 12 populations; Fig. 1b is rescaled for better resolution of those 
that did not become point-mutation mutators. Hypermutability tended 
to decline over time as the load of deleterious mutations favoured 
antimutator alleles20. All four populations that were hypermutable at 
10,000 generations accumulated synonymous substitutions (a proxy 
for the underlying point-mutation rate) between generations 40,000 
and 50,000 at much lower rates than from 10,000 to 20,000 generations 
(Extended Data Fig. 2).

Increased numbers of IS elements can also cause hypermutability26,  
with higher rates not only of transpositions but also deletions and dupli-
cations through homologous recombination. In population Ara+1, 
31.8% of all mutations up to 50,000 generations were IS150 insertions, 
compared with 12.3% for the other populations that never evolved ele-
vated point-mutation rates. This mode of hypermutability arose early in 
Ara+1; IS150 insertions are overrepresented in each Ara+1 clone from 
5,000 generations onwards when compared individually to all other 
non-mutator clones from the same generation (Fisher’s exact test with 
Bonferroni correction, P < 0.05). Two clones from other populations 
were also IS150 hypermutators by this test: 38.7% of the mutations in 
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to a new environment.
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a 30,000-generation clone from Ara−5 and 31.7% of the mutations 
in a 40,000-generation clone from Ara−3 were IS150 insertions. The 
aberrant Ara−5 clone shares only one mutation with other sequenced 
Ara−5 clones, indicating early divergence; it does not share point muta-
tions with any other population, excluding cross-contamination. The 
emergence of these various mutator types shows that evolution can 
alter the production of genetic diversity20,27, which in turn changes the 
tempo and mode of genome evolution.

Population phylogenies
Figure 2a shows phylogenetic trees constructed using point mutations 
for each population; Fig. 2b shows the trees with branches rescaled 
after mutators evolved. Some populations—including Ara−2, which 
became hypermutable early, and Ara−6, which never did—harbour 
lineages that coexisted for tens of thousands of generations. Some 
others—including Ara−4, which became hypermutable, and Ara+2, 
which did not—are more linear in structure, without deep branches 
among the sequenced clones. Deep branches were probably supported 
by the diversity-promoting effects of negative-frequency-dependent 
interactions, as shown in the Ara−2 population22,23. Sequencing 
whole-population samples would provide more detailed information 
on within-population diversity11,12.

Dynamics of genome evolution
The accumulation of point mutations increased greatly in hypermu-
table populations9,19,20, potentially overwhelming the genomic signa-
ture of adaptation. Although mutator lineages may experience higher 
rates of fitness improvement17,27, the effect is usually small owing to 
clonal interference between competing beneficial mutations28,29 and 
the increased load of deleterious mutations20,30. Therefore, beneficial 
mutations become harder to detect in a sea of unselected mutations in 
mutator lineages. To understand better the dynamic coupling between 
adaptation and genome evolution, we first analysed the populations 
that retained the ancestral mutation rate up to 50,000 generations and 
the others before they became point-mutation or IS150 mutators.

It was previously found17 that the mean-fitness trajectory of the LTEE 
is well described by a power-law relation, in which log fitness increases 
linearly with log time. Moreover, the power law accurately predicts 
fitness to 50,000 generations using data from only the first 5,000 gen-
erations. It was shown that a population-dynamical model that incor-
porates two phenomena known to be important in the LTEE—clonal 
interference29,31 and diminishing-returns epistasis15,29—generates a 
power-law relation. This model in turn predicts that the number of 
beneficial mutations should increase with the square root of time17. 
However, not all mutations that accumulate are beneficial; neutral and 
nearly neutral mutations can spread by recurring mutation, random 
drift, and hitchhiking32–34. Selective sweeps will purge some neutral 

mutations but cause others to increase; overall, the expected number 
of neutral mutations should increase linearly with time35.

To test these predictions, we fit three models to the trajectory for the 
total number of mutations in the non-mutator and premutator lineages:

=m at

= √m b t

= + √m at b t
where m is the number of mutations, t is time (generations), and a 
and b govern the genome-wide rates of accumulation of neutral and 
beneficial mutations, respectively (Fig. 3). (Extended Data Fig. 3 shows 
the models fit to each population separately.) Using the Akaike infor-
mation criterion (AIC), the two-parameter model fits the data much 
better than those with only the linear (ΔAIC = −77.7) or square-root 
(ΔAIC = −99.7) terms. Because the one-parameter models are nested 
within the two-parameter model, we can also assess the significance of 
adding the second parameter; P values are 7.5 × 10−5 and 5.2 × 10−7 
relative to the linear and square-root models, respectively. The trajec-
tory for genome evolution thus shows signatures of both adaptive and 
non-adaptive changes. However, the model that predicts the square-
root trajectory of beneficial substitutions makes various assumptions 
(for example, about the form of epistasis), and both the predicted and 
observed trajectories have statistical uncertainties. (Extended Data Fig. 4  
shows the uncertainty in estimating a and b from the observed trajec-
tory.) Therefore, we examined additional evidence to shed light on the 
proportion and identity of beneficial mutations.

Evidence for beneficial mutations
We sought to understand what proportion of the genomic changes in 
the non-mutator populations was adaptive, and how that proportion 
changed over time. One line of evidence derives from the expecta-
tion that synonymous substitutions—point mutations in protein-cod-
ing genes that do not affect the amino-acid sequence—are neutral 
and should therefore accumulate at a rate equal to the underlying  
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Figure 1 | Total number of mutations over time in the 12 LTEE 
populations. a, Total mutations in each population. b, Total mutations 
rescaled to reveal the trajectories for the six populations that did not 
become hypermutable for point mutations, and for the other six before 
they evolved hypermutability. Each symbol shows a sequenced genome; 
some points are hidden behind others. Each line passes through the 
average of the genomes from the same population and generation.
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Figure 2 | Phylogenetic trees for LTEE populations. a, Phylogenies for 
22 genomes from each population, based on point mutations. b, The 
same trees, except branches are rescaled as follows: branches for lineages 
with mismatch-repair defects are orange and shortened by a factor of 
25; branches for mutT mutators are red and shortened by a factor of 50. 
Strain REL606 (on the left) is the ancestor. No early mutations are shared 
between any populations, confirming their independent evolution. Most 
populations have multiple basal lineages that reflect early diversification 
and extinction; some have deeply divergent lineages with sustained 
persistence, most notably Ara−2.
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mutation rate20,35. This expectation is not strictly true owing to selec-
tion on codon usage, RNA folding, and other effects, but it is gener-
ally thought that such selection is extremely weak, affects only a small 
fraction of sites at risk for synonymous mutations, or both36,37. We 
calculate whether nonsynonymous and intergenic point mutations are 
found in excess relative to synonymous mutations, given the number 
of sites at risk for each class. Figure 4a shows the number of synony-
mous mutations in non-mutator and premutator populations, scaled 
so the mean at 50,000 generations is unity. As expected, synonymous 
mutations accumulated at an approximately constant rate (Extended 
Data Fig. 5). Figure 4b shows the number of nonsynonymous mutations 
relative to the neutral expectation based on synonymous mutations. 
Nonsynonymous mutations accumulated ~17.1 times faster than 
synonymous ones during the first 500 generations and ~3.4 times 
faster over 50,000 generations. Nonsynonymous mutations continued 
to accumulate at over twice the rate of synonymous mutations in the 
later generations (Extended Data Fig. 6), implying that most nonsyn-
onymous mutations that reached high frequency were beneficial even 
after so long in a constant environment. The same approach applied to 
intergenic point mutations (Fig. 4c) also reveals a large excess relative 
to synonymous mutations, although the number of events is smaller 
and the uncertainty greater. This result implicates adaptive changes in 
noncoding regions that presumably affect the binding sites for regu-
latory proteins38–40.

Synonymous mutations provide an internal benchmark for non-
synonymous and intergenic point mutations. However, synonymous 
mutations are not directly informative for understanding how selec-
tion affects the accumulation of indels that comprise almost half the 
mutations in non-mutator clones at 50,000 generations (Extended Data  
Fig. 7). To estimate the proportion of beneficial changes for other 
types of mutation, we compare the LTEE and a mutation accumulation  
experiment (MAE) in which 15 lines were propagated via repeated  
single-cell bottlenecks41. Such bottlenecks eliminate the variation 
needed for natural selection, so that all types of mutations accumulate 

at the rates at which they happen, regardless of fitness effects, except for 
lethal or highly deleterious mutations that preclude cells from making  
colonies used to propagate lines29. MAE lines thus provide an external 
baseline for distinguishing beneficial and non-beneficial mutations. In 
fact, because more unselected mutations are deleterious than benefi-
cial, MAE lines are expected to lose fitness over time, which they did 
(Extended Data Fig. 8).

To quantify the relative rates for all types of mutations in the absence 
of selection, we sequenced clones from the MAE lines after 550 daily 
bottlenecks (Supplementary Data 1). Consistent with the random 
accumulation of mutations, the number of nonsynonymous (including 
nonsense) mutations was similar to the expectation based on synon-
ymous mutations (117 observed, 105.02 expected); the resulting ratio 
of 1.11 is well within the 95% confidence interval (0.70–1.50) obtained 
by a randomization test. Also, there was no among-line variation in 
total mutations (χ2 = 5.46, degrees of freedom (df) = 14, P = 0.978). 
We can therefore reasonably use the MAE lines to estimate relative 
rates of different types of mutations, with synonymous ones providing 
a benchmark largely free of selection in both experiments. For example,  
LTEE population Ara−1 had 21 nonsynonymous mutations at  
20,000 generations and the expected number of synonymous muta-
tions based on the average non-mutator population was 1.08 (Extended 
Data Fig. 5); the 15 MAE lines in total had 117 nonsynonymous and 
39 synonymous mutations; thus, the ratio of observed mutations  
to the neutral expectation is (21/1.08)/(117/39) = 6.5. These ratios 
show that all major classes of mutations—including various indels—are  
substantially overrepresented in the LTEE relative to the MAE 
(Extended Data Fig. 9), implying that many mutations in each class 
were adaptive during the LTEE.

Parallel evolution at many gene loci
Parallel evolution occurs when similar changes arise independently 
in multiple lineages, and it is often used to discover putative targets 
of selection4,8,10–13,21. Genetic parallelism can be studied at the level 
of DNA sequence, affected genes, or integrated functions. Parallelism 
at the nucleotide level tends to be rare because different mutations 
in a gene often produce similar benefits4,10–12,21, although there are  
exceptions8. Parallelism at a functional level requires detailed under-
standing that may be unavailable, and it is difficult to interpret when 
there are many mutations. We therefore examined parallelism at the 
gene level.
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Figure 3 | Alternative models fit to the trajectory of genome evolution. 
Each symbol shows total mutations in a clone from five populations 
that never became mutators and seven before point mutation or IS150 
hypermutability evolved. Colours are the same as in Fig. 1; open triangles 
indicate grand means. Dashed grey line shows the best fit to the linear 
model, m = at. Solid grey curve shows the fit to the square-root model, 
m = b √t. Black curve is fit to the composite model, m = at + b √t, where 
a = 0.000944 and b = 0.134856. See text for statistical analysis.
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Figure 4 | Trajectories for synonymous, nonsynonymous and intergenic 
point mutations. a, Synonymous mutations, scaled so that the mean 
of five non-mutator populations (excluding point mutation and IS150 
hypermutators) is unity at 50,000 generations. b, Nonsynonymous 
mutations, scaled using the same rate as synonymous mutations after 
adjusting for sites at risk for both classes. c, Intergenic point mutations, 
scaled using the same rate as synonymous mutations after adjusting for 
sites at risk. Each symbol shows the mean for sequenced genomes from 
a non-mutator or premutator lineage. Colours are as in Fig. 1. Note the 
discontinuous scale; populations with zero mutations are plotted below. 
Black lines connect grand means; shading shows standard errors calculated 
from replicate populations.
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We focused on lineages that retained the ancestral point-mutation 
rate (including clones from populations that later became hypermu-
table) because, as shown earlier, most mutations are drivers in those 
cases; we expect hypermutability to make the analysis less informative 
because many more mutations are passengers. We first calculated the 
expected number of nonsynonymous mutations for each single-copy 
protein-coding gene based on its length as a fraction of all such genes 
and the total number of nonsynonymous mutations in the relevant 
lineages (Supplementary Data 2). We computed G scores for good-
ness of fit between observed and expected values; the total score is 
2,593.7. We compared that total with simulated data sets in which  
positions of mutations in the coding genome were randomized, and the 
observed total significantly exceeded the simulations (mean simulated 
G = 1,933.7, Z = 25.5, P < 10−143). Fifty-seven genes had two or more 
mutations; these genes had 50.1% of the nonsynonymous mutations 

but constituted only 2.1% of the coding genome. (Only one gene 
had multiple synonymous changes.) Table 1 shows the 15 genes that  
contribute the most to the total G score. Several encode proteins with 
core metabolic or regulatory functions, including three involved in 
peptidoglycan synthesis.

We ran the same analysis for lineages that evolved hypermutability 
(Supplementary Data 3), and the randomization test indicates signif-
icant parallelism (G statistic = 5,098.4, mean simulated G = 4,581.1, 
Z = 5.745, P < 10−8). As expected, however, the signal-to-noise ratio 
reflected in the significance level is much weaker than for the non- 
mutator lineages. Most genes with the highest scores in mutator  
lineages differ from those in non-mutators, in part because those genes 
often had beneficial mutations before hypermutability evolved.

Table 2 lists the 16 genes with the most deletions, duplications, 
insertions and intergenic point mutations in non-mutator lineages 

Table 1 | Protein-coding genes with the highest G scores

Gene Length Observed Expected G Annotation

pykF 1,413 19 0.16 181 Pyruvate kinase

iclR 825 13 0.10 128 Transcriptional repressor, glyoxylate bypass

spot 2,109 14 0.25 113 Stringent response

nadR 1,233 12 0.14 106 Bifunctional transcriptional repressor and NMN adenylyltransferase

hslU 1,332 11 0.15 94 Molecular chaperone and ATPase component of protease

yijC (also known as fabR) 705 7 0.08 62 Transcriptional repressor, fatty acid and phosphatidic acid pathway

topA 2,598 8 0.30 52 DNA topoisomerase I subunit

malt 2,706 8 0.31 52 Transcriptional activator, maltotriose-ATP-binding

mrdA 1,902 7 0.22 48 Transpeptidase in peptidoglycan synthesis

mreB 1,044 6 0.12 47 Longitudinal peptidoglycan synthesis

infB 2,673 7 0.31 44 Translation initiation factor IF-2

arcA 717 5 0.08 41 Response regulator in two-component system, anoxic redox control

argR 471 4 0.05 34 Repressor of arginine regulon

rplF 534 4 0.06 33 50S ribosomal subunit protein

mreC 1,104 4 0.13 28 Longitudinal peptidoglycan synthesis

Genes are ranked by G scores computed using observed independent nonsynonymous mutations relative to expected number given gene length (bp). Data are from populations with the ancestral 
point-mutation rate throughout and other populations before they evolved hypermutability.

Table 2 | Genes with the most mutations of other types

Genes Mutations Number IS MAE Annotation

rbsD Mostly large deletions 41 Yes No d-Ribose utilization; most deletions affect entire rbs operon

nupC Various intergenic 19 Yes Yes Nucleoside transporter

iap Mostly large indels 19 Yes No Alkaline-phosphatase isozyme conversion; most indels affect tens of adjacent 
genes including rpoS, which encodes stationary-phase σ factor

mokB Various indels 17 Yes Yes Enables hokB toxin expression

yhgI/gntT Intergenic point mutations 16 No No Gluconate transport

mokC Various indels 15 Yes Yes Enables hokC toxin expression

ybcU (also known 
as borD)

Large indels 14 Yes No Indels affect this and adjacent remnants of DLP12 prophage

ECB_02013 Various indels 14 No Yes Indels affect this and adjacent remnants of P2-like prophage

ECB_02816 (also  
known as kpsD)

Various indels 14 Yes No Polysialic-acid transport protein precursor

acs/nrfA Various intergenic 14 No No Acetyl-CoA synthase; nitrite reductase

hokE Large indels 12 Yes No Toxin in plasmid-derived toxin–antitoxin system; most indels affect several  
adjacent genes involved in iron acquisition

ybeB/phpB Various intergenic 11 Yes No Unknown functions, but adjacent to genes involved in cell-wall synthesis

ydiJ/ydiK Various intergenic 11 No No Predicted FAD-linked oxidoreductase; putative inner membrane protein

ldrC Various indels 10 Yes Yes Small toxic polypeptide

menC IS insertions 10 Yes Yes Menaquinone biosynthesis

fimA Mostly IS insertions 10 Yes No Component of fimbrial complex

Genes are ranked by total mutations excluding nonsynonymous and synonymous point mutations. When two genes are separated by a solidus, the affected sequence includes the intergenic region 
between them. IS column indicates whether the majority of mutations involve IS elements. MAE column indicates whether the same or nearly identical mutations occurred in one or more MAE lines. 
Data are from populations with the ancestral point-mutation rate throughout and others before they evolved hypermutability.
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(Supplementary Data 2). For mutations that impact multiple genes, 
we show the most frequently affected gene (or adjacent pair when 
most events are intergenic). In 12 cases, the majority of the mutations 
were mediated by IS elements; these include insertions as well as 
deletions and duplications that appear to involve homologous recom-
bination. In six cases (five with IS insertions), the same or nearly 
identical mutations occurred in one or more MAE lines, suggesting 
mutational hotspots. These changes may indicate high-frequency 
events, but recall that IS insertions and large indels are enriched in 
the LTEE relative to the MAE (Extended Data Fig. 9), implying that 
many are also beneficial. Indeed, the IS-mediated rbsD deletions 
occur at a high rate and are beneficial in the LTEE environment42, 
and some IS-mediated mutations appear to be beneficial in other 
studies as well43,44.

The parallelisms involving nonsynonymous substitutions and other 
mutations in the LTEE, coupled with their high rates of accumulation  
relative to the MAE, indicate that many observed mutations were 
drivers of adaptation. For indels, however, the specific target genes are 
difficult to identify owing to the multiplicity of genes affected and the 
potentially confounding effect of mutational hotspots.

Discussion
Adaptation by natural selection sits at the heart of phenotypic evolu-
tion. However, the random processes of spontaneous mutation and 
genetic drift often overwhelm and obscure genomic signatures of 
adaptation. We overcame this difficulty by analysing genomes from 
12 bacterial populations that evolved for 50,000 generations under 
identical culture conditions. Even so, six populations evolved hyper-
mutable phenotypes that increased point-mutation rates ~100-fold,  
and another evolved hypermutability caused by a transposable element.  
By focusing on populations that retained the ancestral mutation 
rate, we identified several key features of the tempo and mode of 
their genome evolution. First, a population-genetic model with two 
terms—one for beneficial drivers, the other for neutral hitchhikers— 
fits the dynamics much better than models without both terms. 
Second, the great majority of mutations observed during the early 
generations were beneficial drivers. Third, the proportion of observed 
mutations that were beneficial declined over time but remained sub-
stantial even after 50,000 generations. The second and third findings 
follow from the population-genetic model. Both are also strongly sup-
ported by the excess of nonsynonymous to synonymous substitutions 
in the LTEE and by the excess of several classes of mutations, including  
indels, in comparison to mutation-accumulation lines. Fourth, there 
was strong gene-level parallel evolution across the replicate LTEE 
populations.

Our analyses also show a contrast between the contributions 
of beneficial mutations to molecular evolution and to the fitness  
trajectory in a stable environment. In particular, beneficial mutations 
continued to constitute a large fraction of genetic changes throughout  
the 50,000 generations of the LTEE, whereas the resulting fitness 
gains were only a few per cent in the last 10,000 generations17. 
Beneficial mutations with very small selection coefficients are none-
theless visible to natural selection17. Hence, adaptation can remain 
a major driver of molecular evolution long after an environmental 
shift. Our experimental results thus support a selectionist view of 
molecular evolution, complementing indirect evidence based on 
comparative genomics in bacteria, Drosophila and humans45–47. 
Of course, the LTEE may differ from many natural populations in 
important respects including its low mutation rate, the absence of sex 
or horizontal gene transfer, and a stable environment. As we showed, 
high mutation rates tend to obscure the role of selection in molecu-
lar evolution. The effects of horizontal gene transfer48 and variable 
environments49,50 on the dynamic coupling of genomic and adaptive 
evolution should also be examined further. Long-term experiments 
with microorganisms provide opportunities for rigorous analyses of 
these issues.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Long-term evolution experiment. The LTEE has 12 populations founded from 
two almost identical strains of Escherichia coli. Six populations, designated 
Ara−1 to Ara−6, started from REL606, a descendant of the B strain of Luria and 
Delbrück51–53. The other six, Ara+1 to Ara+6, derive from REL607, which differs 
from REL606 by point mutations in araA and recD. The mutation in araA was 
selected before starting the LTEE; it confers the ability to grow on l-arabinose, 
which provides a marker in competition assays used to measure fitness16,17. The 
recD mutation arose inadvertently before starting the LTEE. The LTEE began in 
1988, and the populations have been propagated (with occasional interruptions) 
at 37 °C by daily 100-fold dilutions in 10 ml Davis minimal medium with 25 μg/ml  
glucose (http://lenski.mmg.msu.edu/ecoli/dm25liquid.html). The regrowth allows 
~6.67 generations per day; the population size fluctuates between ~3 × 106 and 
~3 × 108 cells except in population Ara−3, which has had a population size 
several times larger since ~33,000 generations, when cells gained the ability to 
consume the citrate that is also present in the medium19,54. Whole-population 
samples are taken every 75th transfer (500 generations) and stored with glycerol 
as a cryoprotectant at −80 °C, where they are available for later analysis. Here 
we analysed the genomes of two clones sampled from each population at 500, 
1,000, 1,500, 2,000, 5,000, 10,000, 15,000, 20,000, 30,000, 40,000 and 50,000 gen-
erations (Supplementary Data 1). We deliberately included clones from the deeply 
diverged lineages in population Ara−2 from 20,000 generations onwards and both 
the majority Cit+ lineage and the minority Cit− lineage in population Ara−3 at 
generation 40,000. This sampling scheme does not affect inferences about the rates 
and patterns of genome evolution because both populations were hypermutable 
at these time points and thus excluded from the main analyses. These clones were 
included to illustrate diversity within populations, although we also found previ-
ously unknown cases of divergent lineages. No statistical methods were used to 
predetermine sample size. The experiments were not randomized. The investiga-
tors were not blinded during experiments and outcome assessment.
Mutation-accumulation experiment. The 15 MAE lines analysed here started 
from strain REL1207, which is an Ara+ mutant of a clone sampled from LTEE 
population Ara−1 at 2,000 generations. REL1207 differs from REL606 by a total 
of eight mutations, including one in araA that confers the Ara+ marker phenotype. 
Each line was propagated through 550 single-cell bottlenecks by picking a colony at 
random from a Davis minimal agar plate with glucose at 200 μg/ml and streaking 
the cells onto a fresh plate. Given ~25 cell doublings to produce a typical colony41, 
the 550 cycles represent ~13,750 generations. The bottlenecks imposed by this 
procedure eliminate the genetic variation that fuels adaptation by natural selection; 
as a consequence, mutations accumulate at rates that depend on their underlying 
mutation rate but not their fitness effects, except for highly deleterious mutations 
that preclude sufficient growth to form a colony29. Because more mutations are 
deleterious than are beneficial, fitness declined under this regime (Extended Data 
Fig. 8). The 15 sequenced clonal isolates, each from a different MAE line, are 
JEB807–JEB821 (Supplementary Data 1). None of the lineages became hypermu-
table based on their mutational signatures and the absence of significant hetero-
geneity in the total mutations accumulated (see main text). However, the mean 
per-generation rate at which synonymous mutations arose was ~3.5-fold higher 
in the MAE lines than in the five LTEE populations that remained non-mutators 
for all 50,000 generations (Supplementary Data 4; ts = 3.0755, P = 0.0065). This 
difference may reflect the different conditions in liquid and agar media, including 
the glucose concentration and local cell density, which might affect the reactive 
oxygen species that cells experience. The comparisons between the LTEE and 
MAE (Extended Data Fig. 9) would change if the underlying rates of the various 
types of mutation responded disproportionately to the different conditions in the 
MAE. That possibility seems implausible for the different classes of point mutation 
(Extended Data Fig. 9a, b), and the differences would have to be substantially 
larger than the different rates of synonymous mutations to produce the excess 
IS150 insertions (Extended Data Fig. 9c) and large indels (Extended Data Fig. 9f) 
observed in the LTEE relative to the MAE.
Genome sequencing. Frozen samples from the LTEE and MAE were revived via 
overnight growth at 37 °C in either LB or Davis minimal medium supplemented 
with 1,000 μg/ml glucose. Genomic DNA was isolated from each culture using the 
Qiagen Genomic-tip 100/G kit or equivalent. The DNA samples were sequenced 
at Genoscope or Integragen SA (Évry, France), the Michigan State University 
Research Technology Support Facility (East Lansing, USA), or the University of 
Texas at Austin Genome Sequencing and Analysis Facility (Austin, USA). Illumina 
Genome Analyzer and HiSeq instruments were used to generate single-end or 
paired-end reads ranging in length from 35 to 150 bases according to standard 
procedures, with median coverage of 80-fold and 95-fold for the 264 LTEE and 15 
MAE clones, respectively (Supplementary Data 1). Of the 264 LTEE genomes in 
this study, 40 were previously analysed in other studies9,19,20,55–57. Supplementary 
Data 4 shows the number of every type of mutation inferred after performing 

the analyses described below on each of the LTEE and MAE genomes used in 
this study.
Mutation calling. We used breseq (versions 0.26.0 to 0.27.0) to predict both  
single-nucleotide and structural differences24,25 based on how the Illumina reads 
for each sample mapped to the genome sequence of E. coli B REL606 (GenBank 
accession NC_012967.1)52. We counted and classified mutations using an updated 
version of the REL606 reference genome with improved feature annotations. The 
updated genome file (in both GenBank and GFF3 formats) and lists of predicted 
mutations in each evolved genome (in the Genome Diff format described in an 
appendix to the breseq manual) are freely available online (http://github.com/ 
barricklab/LTEE-Ecoli).

Most types of single-step mutations, including large deletions and transposition 
events leading to copies of IS elements at new positions in the genome, are directly 
predicted by breseq when they occur in non-repetitive genomic regions. The initial 
lists of predicted mutations were curated and refined as previously described24. 
Briefly, complex mutations involving multiple steps (such as a new IS insertion 
followed by a flanking deletion) and structural mutations that overlap repetitive 
regions of the genome were manually resolved from unassigned new junction and 
missing coverage evidence in the breseq output. Large duplications and amplifica-
tions were detected by examining the coverage depth of mapped reads across the 
reference genome and comparing this information with the positions of repeat 
sequences and unassigned junctions. Owing to limitations of short-read DNA 
sequencing data, we could not fully predict point mutations and indels of one to a 
few base pairs within repeat regions (for example, IS elements) or gene conversions, 
in which intragenomic recombination between nearly identical copies of a large 
repeat region (for example, the seven copies of the rRNA operon) converts a minor 
variation in one copy to match exactly the sequence of another copy. Instead, all 
such genetic changes in repetitive regions of the genome were uniformly ignored 
in downstream analyses, as described later.

To validate the final lists of mutations predicted in each clone, we applied 
these changes to the ancestral REL606 sequence and used breseq to compare the 
Illumina reads against this simulated evolved genome to verify there were no  
further, unexplained discrepancies. This step of applying mutations to the reference 
genome was also used to estimate the final genome size of each evolved clone, with 
the assumption that new IS insertions were of the most common size for that IS  
element in the reference genome.

For 6 of the 264 LTEE samples, there was evidence of non-clonality in the 
sequence data. Some samples appeared to be mixtures of two very closely related 
clones that shared nearly all mutations but had one to several mutations specific 
to each type, together adding to a frequency of 100% (for example, sets of muta-
tions at frequencies of 35% and 65%). This situation might result from inadvert-
ently sampling two adjacent colonies on an agar plate when picking clones from 
an LTEE population. In other cases, only one or two mutations were found at 
an intermediate frequency. This type of heterogeneity might arise from strong 
selection favouring new mutations during colony outgrowth, subculturing and 
revival of samples before DNA extraction, as these conditions differ from the 
LTEE. In each case, we reconstructed the major genotype in the sample, as noted 
in Supplementary Data 1.

We also ignored putative genome variation associated with a cryptic 186-like 
prophage element (REL606 genome coordinates 880528–904682). In ten of the 
LTEE populations, we observed clones with increased read-coverage depth of 
this region and reads spanning a new sequence junction consistent with either  
tandem head-to-tail amplifications of this region or the production of circular 
DNA molecules joined at these exact nucleotides. The changes in the apparent 
copy number of this region often deviated from the integer values expected for 
a stable duplication or amplification. The prophage-related changes in coverage 
appeared most often in genomes isolated from 2,000 generations or earlier in the 
LTEE. There is no evidence of infective phage production in the LTEE, but it is 
possible that replication of DNA encoding a defective phage occurs stochastically 
at some low level in the ancestral strain REL606 or that production of this DNA is 
induced by stress when culturing samples for DNA isolation.
Phylogenetic consistency. Owing to the long duration of the LTEE and the evolution 
of mutators in several lineages, some mutations may be hidden or initially grouped 
with other mutations into a single change when comparing a late-generation  
evolved genome with the ancestral genome. For example, a point mutation might 
occur early in the experiment and then the region containing that mutation is 
later deleted. Similarly, the deletion of one base early and the subsequent deletion 
of an adjacent base would be called as a single two-base deletion in later samples. 
To obtain more accurate counts in light of these issues, we used each population’s 
inferred phylogeny to split or add mutations, as appropriate, so that the mutation 
list for each clone reflects the most parsimonious set of mutational steps between 
that clone and its ancestor. Specifically, we chose histories with the fewest total 
mutations, the fewest mutations on early branches (in case of ties), and the fewest 
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total nucleotide changes summed over all mutations. Because this procedure is con-
servative in adding mutations to achieve phylogenetic consistency, it might under-
estimate the number of mutations on branches leading to an evolved genome when 
intermediate states are not resolved by the relationships of the sequenced clones.
Final mutation lists. We performed two final filtering steps to enable the sets of 
mutations to be uniformly compared across all genomes. In doing so, we classi-
fied as ‘small mutations’ all single-nucleotide substitutions, insertions and dele-
tions of 20 or fewer bp, substitutions replacing 20 or fewer bp in the reference 
genome with 20 or fewer other bp, and all simple sequence repeat (SSR) mutations 
regardless of their size. SSR mutations add or remove one or more copies of a 
tandem-repeat unit consisting of one or a few bp. We defined SSR mutations as 
containing at least two copies of the repeat unit and having a total length of at least 
five bp when including all copies of the tandem repeat in the reference genome. 
For example, the genetic changes GGGGG→GGGG, TATATA→TATATATA 
and TACGTTACGT→TACGT would all be classified as SSR mutations, but 
GGGG→GGGGG, TATA→TATATA and TACGT→TACGTTACGT would 
not. All other genomic changes were considered ‘large mutations’ for purposes of  
filtering.

The ability to call small mutations located in repetitive regions of the genome 
is dependent on read length, so we removed all such mutations in regions where 
it would be a problem to uniformly detect them from the mutation lists before 
further analyses. To do this, we enumerated all regions of ≥ 20 bp that had an exact 
match elsewhere in the genome of the ancestral strain REL606 using MUMmer 
v.3.23 (ref. 58). We then merged regions from this list that were separated by five 
or fewer bp. All resulting regions that were now ≥ 35 bp were included in a list of 
masked genomic intervals. We also added to this list a hypervariable SSR consisting 
of seven copies of a tetranucleotide sequence that could not be reliably called in 
data sets with short reads (coordinates 2103889–2103919). Any small mutations 
contained in these masked regions were excluded from all downstream analyses.

Finally, we flagged all nucleotide substitutions or small indels occurring within 
20 bp of the end of an IS element. The sequences directly adjacent to IS elements 
appear to experience an unusually high mutation rate, possibly due to frequent 
transposase cleavage and DNA repair. Mutations at these IS-adjacent sites probably 
have no effect on cellular phenotypes and fitness. We excluded them from the final 
lists of mutations used in all further analyses because they could bias the inferred 
mutational spectra and rates.
Phylogenetic analyses. To produce the phylogenetic trees shown in Fig. 2, we used 
the point mutations associated with each clone. A minimum-evolution tree was 
built using the Jukes–Cantor one-parameter model59. We used this model for two 
reasons. First, the mutator lineages had very different mutational spectra from the 
non-mutators9,20,55,57. Second, many mutations seen in non-mutator lineages were 
under positive selection, and so it is appropriate to give the mutations equal weight 
and not, for instance, reduce the importance of transitions relative to transversions. 
The trees were plotted with the R package APE60. The composite tree has the star-
like structure expected for independent evolution of the populations. Therefore, 
trees were made separately for each population and then combined in Fig. 2, which 
allowed multiple basal branches to be placed with the appropriate populations.
Parallel evolution in non-mutator lineages. For genomes that did not come from 
point-mutation hypermutator lineages (Supplementary Data 1), we examined the 
extent of parallelism at the gene level in two ways. The first approach was based 
only on nonsynonymous mutations, because it is straightforward to quantify the 
overall extent of parallelism, determine the statistical significance of the paral-
lelism, and rank genes based on their contributions to the significance. For each 
protein-coding gene i, we know its length, Li, and the number of independent non-
synonymous mutations observed in that gene across all clones from non-mutator  
and premutator lineages, Ni. We summed the lengths and relevant mutations 
over all single-copy protein-coding genes in the ancestral genome to obtain Ltot 
(3,920,306) and Ntot (457, including two mutations that each affected overlapping 

reading frames), respectively. We computed the expected number of mutations in 
each gene, Ei, as follows:

= ( / )E N L Li itot tot

We then computed a Gi score for each gene for which Ni > 0 as follows:

= ( / )G N N E2 logi i i ie

We set Gi = 0 for those genes for which Ni = 0. This analysis ignores variability 
among genes in the proportion of sites at risk for nonsynonymous mutations. 
However, such differences are small and should hardly affect the analysis. The total 
G statistic equals the sum of the scores over all genes. To compute the expected 
G statistic under the null hypothesis of a random distribution of mutations, we 
generated 1,000 simulated data sets in which Ntot mutations were randomly 
placed throughout the coding genome. We computed the total G statistic for each 
simulated data set, and we calculated its mean and standard deviation across the  
1,000 simulations. To assess the significance of the observed G statistic, we com-
puted the Z score as the difference between the observed and mean simulated values, 
divided by the standard deviation of the simulated values. Supplementary Data 2  
lists each gene and the information used to calculate its G score. Table 1 shows the 
15 genes with the highest G scores.

Supplementary Data 2 also shows other categories of mutation in or near each 
protein-coding gene including synonymous mutations, intergenic point muta-
tions (between any particular gene and one of its immediately adjacent genes),  
IS insertions, small indels (≤50 bp), large deletions (>50 bp) and long duplications 
(>50 bp). Table 2 shows the 16 genes that had the most total deletions, duplications, 
insertions and intergenic point mutations (that is, all mutations except synonymous 
and nonsynonymous mutations in the coding gene itself).
Parallel evolution in mutator lineages. We examined parallel changes in lineages  
that evolved point-mutation hypermutability by analysing nonsynonymous  
substitutions as above. To identify mutations that occurred after a lineage became 
hypermutable (Supplementary Data 3), we subtracted the mutations that occurred 
on non-mutator branches from the total mutations. This approach may result in a 
few mutations that arose before hypermutability being included in the counts for 
mutator lineages, but given the large increases in the point-mutation rate in the 
mutators (Fig. 1) it provides a reasonable approximation.
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Extended Data Figure 1 | Changes in genome size during the LTEE. 
Box-and-whiskers plot showing the distribution of average genome 
length (Mb) for each of the 12 LTEE populations based on the two clones 
sequenced at each time point shown from 500 to 50,000 generations. 
The red line shows the length of the ancestral genome. The boxes are the 

interquartile range (IQR), which spans the second and third quartiles of 
the data (25th to 75th percentiles); the thick black lines are medians; the 
whiskers extend to the outermost values that are within 1.5 times the IQR; 
and the points show all outlier values beyond the whiskers.
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Extended Data Figure 2 | Accumulation of synonymous mutations in 
populations that evolved point-mutation hypermutability. Each symbol 
shows a sequenced genome from a hypermutable lineage. Colours are the 
same as those in Fig. 1. The accumulation of synonymous substitutions 
serves as a proxy for the underlying point-mutation rate. All four of 

the populations that became hypermutable before 10,000 generations 
accumulated synonymous mutations at higher rates between 10,000 
and 20,000 generations than between 40,000 and 50,000 generations, 
indicating the evolution of reduced mutability.
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Extended Data Figure 3 | Alternative models fit to trajectory of genome 
evolution for each LTEE population. a, Ara−1. b, Ara+1. c, Ara−2.  
d, Ara+2. e, Ara−3. f, Ara+3. g, Ara−4. h, Ara+4. i, Ara−5. j, Ara+5.  
k, Ara−6. l, Ara+6. Each symbol shows the total mutations in a sequenced 
genome; in many cases, the symbols for the two genomes from the same 
population and generation are not distinguishable because they have 

the same, or almost the same, number of mutations. For the populations 
that evolved hypermutability, data are shown only for time points before 
mutators arose. In each panel, the dashed grey line shows the best fit to 
the linear model; the solid grey curve shows the best fit to the square-root 
model; and the solid black curve shows the best fit to the composite model 
with both linear and square-root terms.
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Extended Data Figure 4 | Uncertainty in parameter estimation for the 
model describing the rates of accumulation for neutral and beneficial 
mutations. Contours show relative likelihoods for simultaneously 
estimating the linear and square-root coefficients from the observed 
numbers of mutations that accumulated over time in non-mutator and 

premutator lineages (Fig. 3). The black central point shows the maximum 
likelihood estimates, and the three black contours show solutions 2, 6 and 
10 log units away. The points on the horizontal and vertical axes show 
values for the best one-parameter models.
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Extended Data Figure 5 | Accumulation of synonymous substitutions 
in non-mutator lineages. Each filled symbol shows the mean number 
of synonymous mutations in the (usually two) non-mutator genomes 
from an LTEE population that were sequenced at that time point; non-
integer values can occur if the two genomes have different numbers. 

Small horizontal offsets were added so that overlapping points are visible. 
Colours are the same as in Fig. 1. Open triangles show the grand means of 
the replicate populations. The grey line extends from the intercept to the 
final grand mean. The slope of that line was used to scale the relative rates 
of synonymous, nonsynonymous and intergenic point mutations in Fig. 4.
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Extended Data Figure 6 | Temporal trend in accumulation of 
nonsynonymous mutations relative to the neutral expectation in non-
mutator lineages. Interval-specific accumulation of nonsynonymous 
mutations calculated from changes in the total number of nonsynonymous 
mutations between successive samples. As with the cumulative data 
in Fig. 4b, values are scaled by the average rate of accumulation for 
synonymous mutations over 50,000 generations, after adjusting for the 

numbers of genomic sites at risk for nonsynonymous and synonymous 
mutations. Each point shows the average rate calculated for a non-mutator 
or premutator population; small horizontal offsets were added so that 
overlapping points are visible. Note the discontinuous scale; populations 
with no additional mutations over an interval are plotted below. Colours 
are the same as in Fig. 1. Black lines connect grand means; the grey 
shading shows standard errors calculated from the replicate populations.
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Extended Data Figure 7 | Mutational spectrum for non-mutator 
lineages in the LTEE. Shaded bars show the distribution of different 
types of genetic change for all independent mutations found in the set 
of non-mutator clones that were sequenced at each generation. The total 
number of mutations in this set at each time point (N) is shown above each 

column. Base substitutions are divided into synonymous, nonsynonymous, 
intergenic, and other categories; the nonsynonymous category includes 
nonsense mutations, and the ‘other’ category includes rare point mutations 
in noncoding RNA genes and pseudogenes.
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Extended Data Figure 8 | Changes in fitness of MAE lines after 550 
single-cell bottlenecks and ~13,750 generations. Each point shows 
the mean fitness based on nine competition assays between the MAE 
ancestor (REL1207) or one of the 15 MAE lineages (JEB807–JEB821) and 
the Ara− variant of the MAE ancestor (REL1206). One-day competition 

assays were performed using the standard procedures and same conditions 
as for the LTEE16,17. Error bars show 95% confidence intervals. *P < 0.05, 
**P < 0.01, based on two-tailed t-tests of the null hypothesis that relative 
fitness equals 1. Ten of the fifteen MAE lines experienced significant 
fitness declines, while none had significant gains.
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Extended Data Figure 9 | Trajectories for mutations by class in the 
LTEE in comparison with neutral expectations based on the MAE.  
a–f, Accumulation of nonsynonymous mutations (a), intergenic point 
mutations (b), IS150 insertions (c), all other IS-element insertions (d), 
small indels (e) and large indels (f). Colours are the same as in  
Fig. 1. All values are expressed relative to the rate at which synonymous 
mutations accumulated in non-mutator LTEE lineages over 50,000 

generations (Fig. 4a), and then scaled by the ratio of the number of 
the indicated class of mutation relative to the number of synonymous 
mutations in the MAE lines. In all panels, each symbol shows a non-
mutator or premutator population. Note the discontinuous scale, in which 
populations with no mutations of the indicated type are plotted below. 
Black lines connect grand means over the replicate LTEE populations; the 
grey shading shows the corresponding standard errors.
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